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Abstract. Ring polymers in three dimensions can be knotted, and the dependence of their
critical behaviour on knot type is an open question. We study this problem for polygons on the
simple cubic lattice using a novel grand-canonical Monte Carlo method and present numerical
evidence that the entropic exponent depends on the knot type of the polygon. We conjecture
that the exponent increases by unity for each additional factor in the knot factorization of the
polygon.

Linear polymer molecules can be highly self-entangled and these entanglements can be
trapped as knots in circular polymers. There are a number of convenient models of circular
polymers which can be studied to answer questions about knot probabilities and associated
critical exponents but, in this letter, we shall be primarily concerned with polygons on
the simple cubic lattice. Although polygons with no topological restriction are quite well
understood, there are important open questions when the polygon is constrained to have a
fixed knot type. In particular, little is known about the influence of the knot type on critical
exponents.

We first review some rigorous results about knotted and unknotted polygons. Letpn be
the number of distinct (up to translation)n-edge polygons, and letpn(k) be the corresponding
number when the polygon is conditioned to have a particular knot typek. We shall write
k = ∅ for the unknot and otherwise use the Alexander–Briggs notation so that a trefoil is
31, a figure eight is 41, etc. It is known (Sumners and Whittington 1988, Pippenger 1989)
that

lim
n→∞ n−1 logpn(∅) ≡ κ0 < lim

n→∞ n−1 logpn ≡ κ (1)

so that unknots are exponentially rare in the set of all polygons. There is a similar result
for any fixed knot typek (Soteroset al 1992)

lim sup
n→∞

n−1 logpn(k) < κ (2)

but there are important open questions about the relative numbers of polygons with different
fixed knot types. It is easy to show that

lim inf
n→∞ n−1 logpn(k) > κ0 (3)
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for any knot typek, and that

lim sup
n→∞

n−1 logpn(l) 6 lim inf
n→∞ n−1 logpn(k) (4)

for any compound knotk which hasl as a factor (Whittington 1992). An important open
question is whether the exponential growth rate depends on the knot type.

There are a few numerical results about the relative frequencies of lattice polygons
with different knot types (see for instance Janse van Rensburg and Whittington 1990) and
a detailed study of this question for Gaussian random polygons (Deguchi and Tsurusaki
1993, 1994). Using Monte Carlo methods, Deguchi and Tsurusaki showed that the relative
frequency of occurence of each knot type (other than the unknot) increases asn increases,
goes through a maximum, and then decreases. In fact (for lattice polygons) equation (2)
implies that this decrease at large values ofn must be exponential. The simpler knots have
their maxima at smaller values ofn and the location of the maximum generally moves to
largern as the knot increases in complexity (Deguchi and Tsurusaki 1993, 1994).

For the set of all (unrooted) polygons, it is believed that

pn = Anα−3µn

(
1 + B

n1
+ · · ·

)
(5)

whereµ = eκ . The plausible extension of this to polygons with knot typek is

pn(k) = A(k)nα(k)−3µ(k)n
(

1 + B(k)

n1(k)
+ · · ·

)
. (6)

If this form is indeed correct then (2) implies thatµ(k) < µ for everyk.
The primary aim of this letter is to estimate the value of the entropic exponent,α(k),

for some simple knots. Our approach is to use the BFACF algorithm (Berg and Foester
1981, Aragao de Carvalho and Caracciolo 1983, Aragao de Carvalhoet al 1983). This is
a grand canonical algorithm which samples polygons with a variety of lengths in a single
run. The algorithm has a parameter (the step fugacity) which controls the range of values
on which the sampling is focussed. The BFACF algorithm samples along a realization of a
Markov chain defined on the set of all polygons but it is known (Janse van Rensburg and
Whittington 1991b) that the ergodic classes of the Markov chain are the knot types. This
means that if the initial state is a polygon of a particular knot type then only polygons of
that knot type will appear in the sample and all such polygons have a non-zero probability
of occurence. This is a very convenient way to sample polygons with a fixed knot type but
the algorithm has long correlation times. To improve this situation we have used multiple
Markov chain sampling (Geyer 1991, Geyer and Thompson 1994). For this problem, it
involves running several Markov chains in parallel at different values of the step fugacity,
and swapping configurations between different chains with a probability chosen to make
the limit distribution of the overall Markov chain equal to the product of the marginal
distributions of the individual Markov chains. As a result, the time series for the individual
Markov chains can be analysed as though they had been obtained independently. The
swapping procedure dramatically decreases the correlations within each Markov chain, and
produces little overhead since, in any case, one is interested in obtaining data at a variety of
values of the step fugacity. (For a detailed discussion of the method and its implementation
for a problem in statistical mechanics, see Tesiet al 1996.)

The BFACF algorithm realizes a Markov chain with limit distributionπk0(ω) given by

πk0(ω) = 1

8
|ω|qK |ω|χ(k(ω), k0) (7)
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Table 1. Estimates of the mean number of edges as a function of knot type for various values
of K whenq = 3.

K 〈n(∅)〉 Error 〈n(31)〉 Error 〈n(41)〉 Error 〈n(31#31)〉 Error

0.203 26.11 0.09 89.84 0.12 111.34 0.13 222.50 0.29
0.205 32.00 0.11 104.08 0.15 127.68 0.16 253.76 0.37
0.207 41.45 0.15 126.07 0.21 153.50 0.23 300.42 0.53
0.209 59.55 0.23 165.97 0.35 199.47 0.40 380.96 0.96
0.210 76.23 0.33 200.77 0.56 240.56 0.59 451.7 1.5
0.2105 88.90 0.41 227.98 0.77 270.20 0.80 499.2 1.9
0.2110 107.21 0.54 264.0 1.2 310.7 1.1 568.9 2.9
0.2115 132.70 0.87 318.1 1.9 370.1 2 661.7 5.0
0.2120 179.3 1.45 408.3 4.1 466.9 4.5 812.9 7.6
0.2124 243.6 2.7 533.9 7.3 603.2 9.5 1019 12
0.2128 379 8 790 17 883 21 1394 35
0.2130 522 15 1067 37 1170 39 1857 140
0.2131 636 24 1293 60 1404 54 2286 285
0.2132 830 35 1658 115 1795 83 2853 483

whereq and K are parameters which can be chosen to optimize the sampling,|ω| is the
number of edges in the polygonω, k(ω) is the knot type ofω, χ is an indicator function
which is 1 if ω has the same knot type (k0) as the first polygon in the realisation of the
Markov chain and zero otherwise, and8 is a normalization. Hence, the mean number of
edges in polygons of knot typek sampled atq andK is given by

〈n(k)〉 ≈ [α(k) + q − 2]µ(k)K

1 − Kµ(k)

(
1 − B(k)1(k)[1 − Kµ(k)]1(k)

α(k) + q − 2

)
(8)

where we have made use of (6). In table 1 we give estimates of〈n(k)〉 as a function of
K for runs carried out withq = 3. In each case we used 16 parallel Markov chains and
sampled every 105 attempted BFACF moves. The results are based on 80 000 sample points
(at each value ofK) for the unknot, 85 000 sample points for the trefoil, 95 000 sample
points for the figure eight knot and 110 000 sample points for the square knot.

In our analysis of the data we assume thatµ(k1) = µ(k2) = µ(∅). We know from
equations (2) and (3) thatµ(∅) 6 µ(k) < µ = eκ for any knotk, and numerical evidence
suggests thatµ(∅) is numerically very close toµ (Janse van Rensburg and Whittington
1990). Hence any error introduced by this assumption will be numerically very small.
Taking the ratio of the averages in (8) for two different knot typesk1 andk2, and assuming
also that1 = 1/2 (LeGuillou and Zinn-Justin 1980, 1989, Liet al 1995) independent of
knot type, gives

〈n(k1)〉
〈n(k2)〉 ≈ α(k1) + q − 2

α(k2) + q − 2

[
1 + c(1 − Kµ(∅))1

]
. (9)

Therefore plotting〈n(k1)〉/〈n(k2)〉 against (1 − Kµ(∅))1/2 should give a curve which
will become linear asK approaches 1/µ(∅) from below and have an intercept of
[α(k1) + q − 2]/[α(k2) + q − 2]. In figure 1 we show results, withq = 3, for k1 = 41 and
k2 = 31, k1 = 31 andk2 = ∅, k1 = 31#31 andk2 = ∅.

The fact that the curve for 41 and 31 is clearly approaching a value very close to unity
strongly suggests thatα(41) = α(31). For the other two cases the intercept is difficult to
determine precisely but we estimate that

α(31) + 1

α(∅) + 1
= 1.8 ± 0.2 (10)
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Figure 1. Plot of 〈n(k1)〉/〈n(k2)〉 against(1− Kµ(∅))1/2 for k1 = 41 andk2 = 31 (◦), k1 = 31

andk2 = ∅ (•), k1 = 31#31 andk2 = ∅ (4).

and that

α(31#31) + 1

α(∅) + 1
= 2.6 ± 0.2 (11)

In forming these estimates we have given considerable weight to the estimates at large
values ofK, corresponding to large values of〈n〉.

In order to estimate the value ofα(31) from this intercept we need a value for
α(∅). We have used our data to make a direct estimate of this quantity with the result
α(∅) = 0.27± 0.03 (three standard deviations) . The value of the intercept given in (10),
together with our direct estimate (0.27), is consistent withα(31) = α(∅) + 1. Similarly, the
intercept in (11) is consistent withα(31#31) = α(∅) + 2.

Our results show that the exponentα clearly depends on the knot type of the polygon, but
the exponentν characterising the radius of gyration is independent of knot type (Janse van
Rensburg and Whittington 1991a). This implies that the hyperscaling relationdν = 2 − α

does not apply in three dimensions when the polygons are conditioned to be a particular
knot type, and suggests that there is no analogue of the connection between polygons
and theO(n) model when the polygons have fixed knot type. There are other examples
known (e.g.c-animals) where the exponent controlling the growth of the number of objects
depends on a topological restriction (Soteros and Whittington 1988) but the metric exponent
is independent of such restrictions (Zhaoet al 1992). In analogy with thec-animals case,
for which it is believed (Lubensky and Isaacson 1979) that the entropic exponents for trees
and animals are the same, one might expect thatα(∅) should be equal toα. The best
estimate ofα comes from a Monte Carlo estimate ofν together with hyper-scaling (Liet al
1995), givingα = 0.237± 0.005 (three standard deviations). On the basis of our estimate
for α(∅) we cannot say anything conclusive about this point.

Our results for the unknot, trefoil, figure eight and square knots suggest that, for any
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knot k, the exponentα(k) might be given by

α(k) = α(∅) + Nf(k) (12)

whereNf(k) is the number of prime factors in the knot factorization ofk.
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